Wang L, Jayaraman B, Evans D, et al. Efficient Privacy-Preserving Nonconvex Optimization[J]. arXiv preprint arXiv:1910.13659, 2019.
为非凸ERM的优化问题提供了隐私保护。提出了一种DPSGD,给出了privacy、gradient complexity和utility的tight analysis。可以达到目前已知最好的utility保证[WANG, D., YE, M. and XU, J. (2017). Differentially private empirical risk minimization revisited: Faster and more general. In Advances in Neural Information Processing Systems.],同时降低gradient complexity。可以用于分布式的设定中。
Main Idea
提出的算法就是对stochastic ecursive variance-reduced gradient descent algorithm[1,2,3]中的梯度进行扰动。
其实主要是想学习下用RDP的证明。云里雾里的唉。
pdf test:
Conditional gradient method.pdf
Reference
[1] NGUYEN, L. M., LIU, J., SCHEINBERG, K. and TAKA ́ Cˇ , M. (2017). Sarah: A novel method for machine learning problems using stochastic recursive gradient. In 34th International Conference on Machine Learning.
[2] FANG, C., LI, C. J., LIN, Z. and ZHANG, T. (2018). Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. In Advances in Neural Information Processing Systems.
[3] ZHOU, D., XU, P. and GU, Q. (2018). Stochastic nested variance reduction for nonconvex optimization. In 32nd International Conference on Neural Information Processing Systems.